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Adversarial machine learning is a prominent research area aimed towards exposing and mitigating security

vulnerabilities in AI/ML algorithms and their implementations. Data poisoning and neural Trojans enable

an attacker to drastically change the behavior and performance of a Convolutional Neural Network (CNN)

merely by altering some of the input data during training. Such attacks can be catastrophic in the field, e.g. for

self-driving vehicles. In this paper, we propose deploying a CNN as an ecosystem of variants, rather than a

singular model. The ecosystem is derived from the original trained model, and though every derived model

is structurally different, they are all functionally equivalent to the original and each other. We propose two

complementary techniques: stochastic parameter mutation, where the weights \ of the original are shifted

by a small, random amount, and a delta-update procedure which functions by XOR’ing all of the parameters

with an update file containing the Δ\ values. This technique is effective against transferability of a neural

Trojan to the greater ecosystem by amplifying the Trojan’s malicious impact to easily detectable levels; thus,

deploying a model as an ecosystem can render the ecosystem more resilient against a neural Trojan attack.

Additional Key Words and Phrases: Adversarial Machine Learning, Data poisoning, countermeasures

ACM Reference Format:
Brooks Olney and Robert Karam. 2021. Diverse, Neural Trojan Resilient Ecosystem of Neural Network IP.

ACM J. Emerg. Technol. Comput. Syst. 1, 1, Article 1 (January 2021), 23 pages. https://doi.org/10.1145/3471189

1 INTRODUCTION
The field of Artificial Intelligence (AI) and sub-field of Machine Learning (ML) have been one of

the most important and prolific areas of research in the past few decades. Within the field of ML,

the area of deep learning, and specifically with Deep Neural Networks (DNNs) and Convolutional

Neural Networks (CNNs) has seen great success in areas such as healthcare, security, speech

recognition, and computer vision. Their applications in computer vision, namely, image recognition

and classification, have seen some of the most widely recognized advancements in the area [60,

27, 21, 18]. Advancements in the automotive industry have also brought about the concept of

self-driving cars, which rely heavily on neural networks for processing their surroundings and

making decisions. The innovation within this industry has sparked interest in research geared

towards equipping such autonomous systems with high performance and fault tolerant deep

learning algorithms [8]. Operational failure of these systems can potentially lead to injury and

property damage, and thus may introduce liability issues.

This is an important consideration with regards to security as well. Security concerns arise when

an intellectual property (IP) vendor obtains an untrusted ML model and deploys it on their systems,
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with no knowledge of how it may have been tampered with. Concerns also arise from situations

where an IP vendor finalizes their own models and deploys them on their systems, and they must

operate within an untrusted environment. In response, Adversarial Machine Learning has been

a highly influential topic of research within the ML community in recent years. Attacks on ML

systems can be divided into two main categories based on the influence of the attack [24], namely: 1)

causative attacks : which aim to disrupt the learning process of the network at training time, and 2):

evasion attacks : which aim to exploit the classifier during inference. Poisoning is a causative attack

that provides contaminated or mislabeled data points in the training set, degrading the accuracy of

the classifier. Evasion attacks are an example of exploratory attacks that attempt to construct input

samples which are designed to trick the classifier into interpreting them as something entirely

different, or just to gain information about how the ML algorithm works.

While poisoning techniques generally evaluate their strength based on the error rate induced

on the classifier, Neural Trojans [36] are a sub-category of poisoning techniques which embody

similar characteristics to that of hardware Trojans. They are extremely difficult to detect because

they are only activated by a certain set of inputs that are only known to the adversary, and the

threats posed by such attacks can be catastrophic. For instance, a neural network IP may be used in

an autonomous vehicle to classify street signs, and an embedded Trojan may cause the classifier

to recognize a stop sign as a 75mph speed limit sign when a sticker is on the sign. However, one

drawback of neural Trojan approaches is that they assume the attacker has access to the input data

to the network. We believe that a neural Trojan that does not require direct manipulation of the

input data for triggering is a much more difficult threat to detect.

In addition to the practicality of the attack itself, there may be thousands or even millions of

copies of that model in operation in the wild. If an attacker is able to successfully mount an attack

on one device, then they could also transfer this attack to any other identical device. Typically,

transferability of an adversarial attack refers to the ability of an adversarial example to fool multiple

different models with different architectures, or for a poisoning attack to be applicable to multiple

different network architectures [13, 42, 34, 51, 38]. In the context of this paper, we use the term

transferability in the same fashion, but with the assumption that if an attacker can mount a

poisoning attack on a system, then they should be able to transfer that attack to an identical system
with ease. This aspect of transferability is commonly overlooked in typical threat analyses. We

believe it paramount to consider the spread of a devastating attack before a proper solution has

been implemented - especially in the aforementioned autonomous systems.

In summary, the main contributions of this paper are as follows:

1) We define a more practical and devastating threat model for which neural network Trojans

can be applied.

2) We present a novel method of deploying a CNN as an ecosystem which is derived from the

original CNN through a process called stochastic parameter mutation.
3) We propose delta-update, a method of updating CNNs in the field which exposes less informa-

tion about the classifier to an attacker, and effectively thwarts a poisoning or neural Trojan

based attack on the model ecosystem.

4) We demonstrate that, with adequate self-check procedures and pooled validation across the

ecosystem, a stealthy attack on one model cannot be translated to any other models within

the diversified ecosystem while maintaining the stealthy nature of the attack. We validate

this claim with statistical analysis of the resulting accuracy before and after the adversarial

update has been applied to every other model in the ecosystem.

The rest of the paper is organized as follows: Section 2 provides a background on topics related

to adversarial machine learning and security trends inspired by biology. Section 3 describes the
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threat model, as well as who the attacker is and what their capabilities and goals are. In Section 4,

we present the methodology of our approach. Then, in Section 5 we present the results of both the

diversity and security of the ecosystems that were generated. In Section 6, we perform a security

analysis of our approach. Finally, we elaborate on possible future works conclude in Section 7.

2 BACKGROUND & RELATEDWORK
In this section, we provide a thorough background on adversarial machine learning, including the

current state-of-the-art in neural network Trojan attack and defense methods. Next, we provide a

background on biologically inspired hardware and software security methods from which we draw

inspiration. Finally, we describe several related works.

2.1 Adversarial Machine Learning
Adversarial machine learning is a relatively new area of research aimed towards exposing and

mitigating the security flaws in ML algorithms and their implementations. The field of adversarial

machine learning is indeed vast and encompasses many different concepts stretching across an

array of domains. Attacks within this domain typically fall within 2 different categories of influence

[24], namely: 1) Causative attacks, and 2) Exploratory attacks. Causative attacks are aimed towards

subverting the training process by inserting malicious examples into the training set. The malicious

examples may be created to be near the decision boundary between two or more classes and/or be

generated using gradient-based methods, thus maximizing the error rate [7, 55, 17, 39]. They may

also include certain noise or signatures which serve as a backdoor for the attacker to reprogram the

network and cause targeted misclassification when it encounters an instance with the signature

of the backdoor [9, 25, 32, 2, 19]. Such backdooring works are very closely related (perhaps even

synonymous) to more recent neural network Trojan attacks [36, 35, 31]. Exploratory attacks are

generally aimed towards exposing certain information about the underlying architecture of the

learning model by providing adversarial examples [1, 58]. One type of exploratory attack is called

an evasion attack. In an evasion attack, the adversary carefully constructs adversarial examples

that are specifically made to evade or “fool” the learning algorithm [6, 49, 17]. Evasion attacks are

perhaps the most thoroughly researched method of attacking a classification system, because the

attacker does not need to make any changes to the underlying network structure or parameters,

and adversarial examples may be transferable to similar model architectures. In this paper, we focus

on subverting the spread of causative attacks, and specifically, neural Trojan-like attacks. A more

in-depth explanation of the threat model, including the goals and capabilities of the attacker, is

provided in Section 3.

2.1.1 Neural Trojans. In general, the process of backdooring or Trojaning a neural network involves
training/retraining the network with a contaminated dataset. The training dataset will contain

samples that have been embedded with the Trojan trigger, where the Trojan trigger is “noise” that

is drawn from a different distribution than the uncontaminated training data. This trigger, when

added to a sample image, is indistinguishable to the human eye. However, the model is inherently

programmed through the training process to recognize this pattern and classify the sample as

whatever the attacker wishes it to. Most importantly, the integration of the Trojan should have a

minimal effect on the classification accuracy on normal testing data. Because the network performs

completely to spec, and the trigger does not activate the Trojan when testing on drawn from the

same distribution as the original training data, this makes the Trojan very difficult to detect.

Intuitively, neural Trojans share some of the same properties as hardware Trojans [50, 35].

Specifically, for most inputs, the neural network IP performs to specification, and the activation of

the Trojan drastically alters the functionality of the neural network IP. However, one important
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distinction between them is that, a hardware Trojan may be designed to trigger upon a particular

(sequence of) input(s) that may occur naturally, without requiring the attacker to manually supply

the trigger input (sequence). For a neural Trojan, the input images must contain the Trojan trigger

for it to activate, which is an abnormal occurrence because the trigger is a signature that comes

from a different distribution than anything it has seen before. This means that, the attacker must

not only have access to (or replicate) the training data, they must also have the ability to influence

the input data during runtime – adding an additional layer of complexity to the attacker.

There are several works that have been or can be categorized as Trojan attacks on neural networks.

For example, the authors in [19] demonstrated that they could backdoor a neural network IP simply

by adding some malicious examples to the dataset containing a pattern of bright pixels - without

compromising the accuracy of the model. The authors also demonstrated that they could cause

classifiers to incorrectly label stop signs that contain a sticker with the backdoor on the bottom of

the sign. Liu et. al. [36] presented a Trojaning attack procedure that selects specific neurons that

will be used to trigger the Trojan, and carefully crafts a Trojan trigger in such a way that maximizes

the output values of the selected neurons. They demonstrated through this process that they could

successfully Trojan a network even without access to the original training data or process. In [33],

the authors proposed a bit-level attack called SIN
2
which involves embedding a software Trojan

within the redundant space in the binary representation of the network. The Trojan can then be

extracted from the network and executed on the target system to perform some malicious action.

For example, the authors demonstrated that they could embed a “fork bomb” in the neural network

and execute it on the target system. Similarly, the authors in [43] present an algorithm which

generates a trigger that is specifically constructed to find “vulnerable” bits of the weights. They

then perform bit-flip attacks (e.g. row-hammer) to those bits, causing the network to classify all

inputs to a target class. They demonstrated that they could force a network to incorrectly classify

92% of test images to a target class with only 84 bit-flips out of 88 million total bits on ResNet-18.

2.1.2 Label Flip Attacks. Label flip attacks (LFA) were first published by Xiao et. al. in 2012 [55] in

the context of poisoning attacks against SVM. They were able to optimize the label flipping strategy

such that the number of contaminated samples is minimized, while the classification error rate is

maximized. With a naive approach, such an attack is relatively easy for an attacker to perform,

because it simply requires that labels from the training set be flipped. The result causes the classifier

to mislearn certain features across the mislabeled classes. Further, the algorithm in [55] is optimized

to impact the accuracy of the target model as much as possible with a minimal number of flipped

samples. In this paper, we utilize a naive implementation of the label flip attack as a baseline in

order to simulate the increase of error rate and change in network parameters after retraining due

to its ease of implementation and architecture agnostic nature.

The LFA differs from traditional Trojan and backdoor approaches in the sense that it has no
explicit trigger. Depending on the parameters for the LFA – i.e. the targeted labels, which samples

are flipped, number of samples flipped, etc. – the attack can pose many different types of threats.

For example, the attack can have a high impact on accuracy when a large number of samples are

flipped. Or, the attack can be more subtle by flipping less samples but only if those samples lie close

to the decision boundary for the targeted class. That being said, we believe that, because the LFA

does not rely on a trigger to activate, that it can be viewed as an always on Trojan, which has the

potential to be even more devastating if not discovered in time.

2.2 Bio-Diversity inspired Security
As computing systems become a more pervasive part of every day life, deploying these systems in

a more secure manner becomes more and more difficult. This has inspired researchers to develop
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newer and more sophisticated security protocols, including protocols that are inspired by biology

and species diversity. There have been many research endeavors that propose bio-inspired security

protocols for the secure deployment of hardware [26, 37, 59, 40] and software [11, 4, 28], as well

as security protocols to protect networks and cyberspace [44, 15] and to ensure data privacy and

security [22, 12]. In general, diversity of a species at the genetic level is necessary for the overall

survival of that species. If a pathogen enters an ecosystem and there is no immunity, then the

pathogen will spread and infect more and more organisms in the ecosystem, causing an epidemic.

This can be extended to the realm of computer system security by recognizing the fact that attacks

on one system can be transferable to another – similar or identical – system. Within the domains of

internet of things (IoT), self-driving cars and others, it is important to consider that the hardware

within these devices must remain in operation in the field for a long period of time, and that the

underlying hardware in these products often consists of similar components. For example, given a

classification model for a self driving car, there may be several hundred thousand or even millions

of these products in operation, with each one having a similar or identical hardware composition.

This has motivated researchers to investigate alternative means of hardware deployment, including

mutating or “patchable” hardware [26, 40].

2.3 Related Work
There are several works which propose methods to detect and mitigate neural Trojans. For example,

the authors in [36] describe several approaches, including; 1) Input anomaly detection, where SVMs

and decision trees are used to discover if there are training samples that come from a different

distribution than the rest of the training data. 2) Re-training, where the user retrains their network
further with legitimate training data. and 3) Input preprocessing, where an autoencoder is used to

filter the input data. In general, the methods to mitigate neural Trojan insertion and/or activation

can be loosely categorized into these 3 main categories. Gao et. al. proposed STRong Intentional

Perturbation (STRIP) to detect Trojan inputs during runtime [16]. They detect input anomalies

by applying perturbations to the input image and measuring the entropy in classification for that

input. Intuitively, a high amount of classification entropy indicates that the input is benign, while a

low amount of entropy may indicate that the input contains a Trojan trigger. The authors in [3]

propose a strategy similar to input preprocessing, but to the training data prior to training. They

use “provenance data” which is used to group the training samples by the probability of them being

benign or containing a Trojan trigger. Each group is then evaluated by training with and without it,

to see what the affect on network accuracy is. This effectively removes the Trojan from the training

set, and thus prevents it from being inserted into the network. Finally, the authors in [54] presented

a framework of detecting Trojans in CNNs when access to the underlying training/testing data is

either limited or nonexistant. Their approach is able to locate and thus reverse engineer the trigger

by maximizing the affected neurons’ outputs – similarly to our approach, where affected neurons

may exhibit more significant errors than others.

There are also several works specifically targeting backdoor attacks, which are very similar

to neural Trojans. One of the first examples, Neural Cleanse [53], presented a comprehensive

framework for detecting, identifying, and mitigating backdoor attacks. They demonstrated that

they could detect a backdoor by searching for the minimum trigger required to make all samples go

to a target class. This proves to be quite effective, but can become computationally expensive with

datasets that have a large number of labels. The authors in [61] proposed a method of detecting

several different types of attack by using mode connectivity. They demonstrated that their approach

was better than a method based on random weight perturbations, which is similar to our approach,

however, their process of noise generation differs from ours, and we include additional measures

beyond weight perturbations.
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Fig. 1. Overview of the threat model. The attacker gains access to an “oracle” device which they can extract the
classification model from. They can then mount their Trojaning attack on their extracted copy and generate a
malicious update for the oracle. If the malicious update achieves the attacker’s goal, then they proceed by
uploading that update to every other identical device they are able to discover over a network.

All of these methods propose different solutions to the same question: “how can we mitigate neural
Trojans?”. However, they address this problem within the context of a single device or system that is

being attacked, without considering the existence of thousands or even millions of identical devices

in the wild. In this paper, we pose the question: “how can we prevent the spread of a neural Trojan?”.
To address this unmet need, we leverage the ambiguous and complex nature of neural networks to

create a diverse ecosystem of “genetically” different but functionally equivalent networks, where a

single network may be infected, but that infection will not spread to the rest of the ecosystem. To

the best of our knowledge, there has been no prior work in literature that proposes a method of

diversity for securely deploying neural networks, nor have there been efforts towards leveraging

the ambiguity of their knowledge representation through the weights for security purposes. As

such, the methods outlined in this paper serve as a novel contribution to this field. DiMattina et. al.

first explored the concept of making small adjustments to the model while retaining its functionality

in [14]. The authors proposed a biologically-inspired mathematical model to determine if a neural

network can retain its functionality while undergoing gradual perturbation of its parameters and

structure. Their results demonstrate that this is possible for networks where the neurons within

hidden layers have gain functions that are power, exponential or logarithmic. In [41] the authors

propose the use of genetic algorithms to search for an accurate and diverse set of learning models

for ensemble learning. We leverage these concepts of gradual perturbation (mutation) of a network’s

parameters for the purpose of neural network deployment security, especially for ecosystem-wide

neural Trojan resilience, and quantify the level of difference and functional equivalence due to

these mutations.

3 THREAT MODEL
In this section, we provide an in-depth explanation about the assumptions we make about the

system and the attacker. We begin by describing the system that the attacker intends to compromise,

and then go into detail about what goals the attacker has. Finally, we will briefly enumerate over

the capabilities of the attacker.

3.1 Target System
In general, the target system is a commercial product which contains a neural network for inference

as a critical component of the overall functionality of the system. A practical example of the target

system is a self-driving car, where the neural network inference engine is critical for the vehicle’s

ability to see and interpret street signs, markers, pedestrians, other cars, etc. In this scenario it is

critical that the system be as fault tolerant as possible – misclassification during a key moment in

time may have catastrophic consequences.
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The target system should have some baseline security protocols in place to prevent against

common means of tampering. For example, when a remote update of the system is in progress,

the system may evaluate the neural network before and after applying the update on several

different metrics related to performance, i.e. a built-in self test (BIST). Example metrics could be;

loss and accuracy on a validation set, statistical comparison of the weight histograms, or even a

checksum of the update file [5]. Presence of these basic security protocols is assumed as a baseline

for deployment of the system.

3.2 Attacker’s Goals
The attacker’s primary goal is to implement a malicious update that bypasses all security protocols,

and spread that update to as many other devices as possible. In general, this update can be referred

to as the neural Trojan. The malicious intent of the Trojan is to induce targeted misclassification

at a very low rate such that it is extremely hard to detect by the BIST. An example would be an

attacker that has their own self-driving car and has learned how to breach its security mechanisms

and send Trojan’ed updates to other users that own the same model of vehicle.

3.3 Attacker’s Capabilities & Knowledge
As mentioned previously, we assume the attacker has access to the system. With this access, the

attacker is able to apply inputs to the network and observe the outputs to the network. This

is referred to as a black-box attack, where the attacker has limited to no knowledge about the

architecture of the system, but can observe inputs and outputs. Through trial and error, the attacker

can extract their own copy of the classification model by observing inputs and their corresponding

outputs - which has been shown to be a practical assumption in recent literature [23, 52, 45, 56–58].

To mount the neural Trojan that we have proposed, the attacker must also have access to a subset

of the training data, or at least some data for the given application that follows the same distribution

as the original training data. Recent research efforts have shown that it is possible to extract a

subset of the training data from a model given black-box access [48]. So, such an assumption is

realistic. Using the data, the attacker will mislabel some subset of those examples corresponding to

the target class labels, and retrain the network. The attacker can then generate and apply the update

to the system - given that it is able to circumvent the baseline security protocols. An overview of

the threat model is given in Figure 1.

4 METHODOLOGY
In this section, we describe our proposed methodology, beginning with a high level overview of our

approach. We then explain how the mutation process works to generate “versions” or “variants”

of the same network that are quite different structurally but remain nearly identical functionally.

Finally, we describe the proposed mechanism for securely updating said networks in the field.

4.1 Overall Flow
We propose a novel framework designed to enable secure deployment of sensitive NN-IP. An

overall flow of the approach is shown in Figure 2. This is enabled via two key components: namely,

1) stochastic parameter mutation (SPM), and 2) delta-update. First, SPM allows us to generate N

variants of the same network by gradually perturbing its weights. This is performed repeatedly N

times, until the entire ecosystem of models has been generated. The parameters of the ecosystem

are then stored in a secure database, shown in Figure 2(a). In the next section, we will describe the

SPM process in detail and why it does not affect the network performance significantly.

Next, the ecosystem is deployed to the appropriate devices, where each device has its own unique

copy of the original NN-IP. During the lifetime of the device, improvements may be made to the
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Fig. 2. (a) Diagram of the overall flow of the proposed methodology. Final network𝑀 is trained, then stochastic
parameter mutation is applied to the weights to derive n copies of the model, which are stored in a secure
database for future deployment. (b) Diagram of the xor-update procedure. Values for 𝛿𝑤𝑛 are XOR’d with the
target network’s weights. (c) Diagram showing that an attacker has determined how to insert a Trojan into
model𝑀𝑑𝑛 ’s update file. The attacker then sends the malicious update to models𝑀𝑑𝑛 and𝑀𝑑𝑚 . Because the
update was tailored for𝑀𝑑𝑛 , it goes undetected by the built-in self test. However, when applied to𝑀𝑑𝑚 , the
update loses its stealthiness, and the test is able to determine that a Trojan has been inserted.

underlying NN-IP and thus the copy on each device would need to be updated to include these

enhancements. To securely update these devices in the field, the second component of our approach,

delta-update, ensures a 1-to-1 mapping between the device and its update file by XOR’ing the

contents of the update file with the current network weights, shown in Figure 2(b). This 1-to-1

mapping ensures that a malicious update carefully crafted by an attacker cannot infect every other
network in the ecosystem. For example, in Figure 2(c), we see that an attacker has Trojan’ed𝑀𝑑𝑖 , but

that same update raises many flags when applied to𝑀𝑑 𝑗 because of the inherent sabotage caused by

the XOR mismatch. We can leverage this to provide pooled validation across the entire ecosystem

which gives the IP owner a clear indication that there is an issue with the given update.

Together, these algorithms implement our diversity-inspired method of secure deployment for

NN-IP. In what follows, we will describe each process in detail.

4.2 Stochastic Parameter Mutation
Naturally, CNNs have evolved to a point where they require a very large number of trainable

parameters (i.e. weights, activations, bias terms, etc.), for example, AlexNet [29] has a total of

62,378,344 trainable parameters. Assuming that the network parameters are in the form of 32-

bit floating point, we can estimate the total size of an AlexNet model to be around 237 MB.

The representation of the network in binary is inherently ambiguous, due to the structure and

organization of the weights due to network architecture, as well their binary representation. Because

of the nature of floating point numbers and how they are structured, small changes to a value may
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result in an “avalanche effect” similar to that in the field of Cryptography, where, a small change in

the decimal value will cause a large change in the binary representation of that number. In this

paper, we leverage this behavior of floating point numbers and ambiguity of the model’s weights to

create a diverse ecosystem of classification models through the novel process of stochastic parameter
mutation. With a CNN model𝑀 trained on 𝐷𝜏 : {𝑥𝑖 , 𝑦𝑖 }𝑘𝑖=1, and a user-defined shifting percentage

threshold 𝑡𝑝 , the process is formalized as follows:

Algorithm 1 Algorithm for Diversifying Model M

Input: 𝑀 , 𝑡𝑝
Output: 𝑀𝑑

1: for layer in M do
2: for weight in layer do
3: 𝑤 ← 𝑤𝑒𝑖𝑔ℎ𝑡

4: 𝛿𝑟 ← 𝑤 × 𝑡𝑝
5: Δ𝑤 ← Random uniform distribution [𝛿𝑟 ]
6: Shift weight by adding Δ𝑤 to𝑤

7: end for
8: end for
9: return 𝑀𝑑

The histogram of the weights provides a nice visualization of their distribution, and thus the

model itself. The distribution of weights in a neural network is determined by many different

aspects of the given application such as; the architecture of the classifier, the training data, and the

regularization types/parameters. That being said, the weights of the network typically follow a

gaussian distribution with very small decimal values (e.g.𝑤𝑖 = [−0.015, 0.015] for AlexNet [20]).
This process alters the distribution of the weights in a nonlinear fashion. Figure 3(a) shows an

example weight histogram before and after stochastic parameter mutation, and Figure 3(b) shows

the histogram of the values for Δ𝑤 .

Shifting the weights must be done on a per-weight basis, with a range specified by 𝑡𝑝 . Applying

this shift range to all of the weights at once may result in some weights being shifted by a greater

value than intended - negatively affecting the accuracy. A random number generator is utilized

for the computation of the shift amount Δ𝑤 to ensure that every model 𝑀𝑑 generated from 𝑀

is unique. With the user defined value 𝑡𝑝 , this shift amount is computed as a random value that

is within the range of 0 and 𝑤 × 𝑡𝑝 , meaning that if the user supplies a value of 0.01 (1%), then

every weight in𝑀 will be shifted by up to 1% of that weight’s value. Because the shifting is done

randomly, there is a non-linear relationship in the distribution of weights from𝑀 to𝑀𝑑 . A pictorial

representation of this process is provided in Figure 4.

Despite the shifting of network parameters, the network retains a nearly identical accuracy on

testing data to the original model, with a relatively high average HD between𝑀 and𝑀𝑑 , which is

shown in Section 5. It is important to note that the range of values for Δ𝑤 is between 𝛿𝑟 and 0,

rather than +/- 𝛿𝑟 . We decided on this range because for instances where the weights are shifted

by a +/- amount, there is a much more pronounced effect on the accuracy of the resulting model.

We believe that this is due to the polarity of weights on the inputs to a given neuron. If negative

weights become more positive and vice versa, then the shift in the decision boundary for the neuron

is much larger. In addition to this range, we decided to only apply stochastic parameter mutation

to the weights, and not the bias terms. Avoiding the bias terms helps stabilize the outputs of each

neuron, reducing the impact on accuracy. The results for poisoning trials are nearly identical, but

omitting the bias terms from the process also has a positive impact on the baseline accuracy.
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Fig. 3. Histograms of the weight distribution of a small MNIST classifier. Graph (a) shows the weights before
and after stochastic parameter mutation is applied. Graph (b) shows the histogram of the Δ𝑤 values. These
results were generated using a value of 𝑡𝑝 = 0.10 (10% diversity threshold).

Once the ecosystem has been derived from M, the weights for each network must be stored

in a secure database; the flow for this part of the approach is shown in Figure 2(a). In the worst

case, this incurs a total storage requirement of 𝑛 ∗ (size of M). However, this may be alleviated

by some data compression techniques which are outside the scope of this paper. It is an absolute

necessity that the parameters for each model in the ecosystem be stored securely, as this will allow

the manufacturer to issue personalized, secure updates to them in the field.
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Fig. 4. (a) Diagram of stochastic parameter mutation applied to the neuron weights. The weights are first
multiplied by the user defined threshold 𝑡𝑝 to obtain {𝛿0, 𝛿1, ..., 𝛿𝑛} which is then passed into a pseudo-random
number generator (PRNG) to supply the values for Δ𝑤𝑘 . The PRNG produces values within the ranges of
(𝛿𝑘 , 0) and (0, 𝛿𝑘 ) for values of 𝛿𝑘 that are negative or positive, respectively. The resulting values are then
added to the original weights - effectively mutating them. (b) Standard diagram of a neuron, with the mutation
process applied on the neuron weights. Output is computed by summing the dot product of the input layer
with the weights and applying an activation function. (c) Example 1-layer feedforward network, with hidden
neurons highlighted in blue.

4.3 Secure Update Mechanism
Traditionally, neural network models are updated by simply replacing the binary file of the network

itself. The weights may be stored in a file and loaded on demand only if the network’s structure has
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not changed between initial deployment and the future update. Transmission of this network over

the internet unintentionally exposes it to threats from a network-based attack, where an attacker

may intercept the model, and maliciously modify it before continuing the transmission to the target

device. Because of this, we believe that in some scenarios this update procedure may be infeasible

due to security and privacy restrictions. More importantly, simply overwriting network parameters

can enable an attacker to place their Trojan’ed network into another device. Hence, limiting the

transferability of the Trojan can help ensure the security of the system.

To address these vulnerabilities, we propose a novel update mechanism which functions by

transmitting the deltas of the weights, rather than the entire weights themselves to the target

device containing the network. Instead of replacing all of the weights by simply loading the binary

file, the binary file will be loaded into memory, and the weights will be updated by XOR’ing each

weight with its corresponding value in the update file – as shown in Figure 2(b). The process of

generating an update file for a network is as follows: first, the model will be retrained with new data,

or different/new parameters that have been chosen to improve the performance of the network;

next, the update file is generated by taking the matrices of weights before and after retraining and

XOR’ing them together. This accomplishes two things, namely:

1) The amount of data potentially exposed to an attacker monitoring the network is minimized,

with no way for the attacker to infer what the actual weights are.

2) The ability to update a neural network’s weights is preserved, due to the XOR functionality.

Use of this update mechanism does not preclude additional precautions / layers of security,

such as encrypting the update file prior to transmission or the use of digital signatures. SPM, in
conjunction with the proposed XOR-based update mechanism, ensures a 1-to-1 relationship between
a model and its update file. Because of the non-linearity associated with randomly shifting the

weights, an update for model 𝑀𝑑𝑖 applied to model𝑀𝑑 𝑗 , will result in unintended functionality to

𝑀𝑑 𝑗 either through a degradation in accuracy, or even sabotaging the functionality of the model

entirely. Most importantly, this scales to a practical threat scenario where an attacker attempts to

Trojan multiple networks.

In the event that optimizations/improvements have been made to the accuracy of the original

model, all of the models in the ecosystem should be updated to share these improvements. It is

assumed that these devices would already have a built-in update mechanism. Rather than overwrite

the existing parameters, the proposed technique would XOR a unique,targeted update file with

the existing network parameters. Hence, for software-driven networks, or software-driven but

hardware accelerated networks, the occasional update process may incur a slight delay due to the

XORing of parameters, rather than simply overwriting, but this would not lead to any additional

delay or overhead during inference.

In order to form the unique update files, the manufacturer must first taking the new version of𝑀

and apply SPM to derive the new ecosystem𝑀𝑒𝑐 = {𝑀𝑑0, 𝑀𝑑1, ..., 𝑀𝑑𝑛}. Next, each model from the

“new” ecosystem is mapped to each model in the “old” ecosystem by XOR’ing their parameters. This

will derive an update for each model that can be deployed to the ecosystem. Finally, the existing

ecosystem database must be overwritten with the new parameters. This will ensure consistency

moving forward for future updates.

In addition to the XOR-based update functionality, an additional mechanism for evaluating the

change in accuracy and/or training parameters should be in place to safeguard against a potentially

malicious update. It is expected that many devices which require high reliability will retain some

form of built-in self test (BIST) and conduct the test on startup. No valid update should have a

negative impact on the accuracy of the model. So, the device running the network should attempt

to update the model via the XOR-based method, and test the accuracy before and after the update.
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If the accuracy falls by a certain amount (or even at all), then that update should be considered at

least unfit, or potentially malicious, and discarded.

5 RESULTS
In this section, we describe our experimental setup, including specifications for the classifier used,

as well as the method and parameters of the poisoning attack. We also present our results for the 2

separate tests, namely 1) show the effect of mutation on the performance (accuracy) and diversity

(Hamming distance) of the ecosystem; and 2) examine the transferability of a Trojan by applying a

malicious update intended for one model to another model. These tests effectively demonstrate

that our approach ensures a sufficient level of diversity, and resilience to infection from another

model’s update without compromising functionality of the system.

5.1 Experimental Setup
As a baseline, we built a CNN based on the classic LeNet-5 model [30] for MNIST digit classification.

The full structure of the network and total number of parameters are shown in Table 1. The model

consists of two 2D convolutional layers with maxpooling layers after them, two fully-connected

layers, and a softmax layer. On average, this simple model achieves 99% accuracy on the test set

with a relatively short amount of training time.

In comparison to state-of-the-art computer vision model architectures, this example is quite

small, and thus requires very little computational power. However, because more standard computer

vision tasks in industry require more computationally expensive models, there has been a lot of

research in network quantization for processing these workloads at the edge. Quantization of neural

networks is aimed towards minimizing storage requirements and computation time by reducing

the precision of the network. Hence, we apply our approach to the the MNIST classifier quantized

to single-precision (32-bit) and half-precision (16-bit) floating point representation to demonstrate

the scalability of our approach.

In addition, we have tested the proposed technique using the much larger VGG-16 based classifier

fine-tuned on the CIFAR-10 dataset
1
. The full structure of this model and total parameters are

shown in Table 2. This model has just over 15M total parameters, and was able to achieve a baseline

performance of 96.53% on the testing set.

All of the software implementation for our experiments was done using Keras [10] – a high level

library for interfacing with Tensorflow. Processing of these workloads was done using the Gaivi

computer vision cluster containing GTX 1080 Tis and Titan V/Xs, at University of South Florida.

Table 1. Architecture of MNIST Classifier [30].

Layer Activation* Neurons Trainable
type Parameters
Conv relu 6 60

Max-pooling - - -

Conv relu 16 880

Max-pooling - - -

FC relu 120 48,120

FC relu 84 10,164

FC softmax 10 850

Total - - 60,074

*Note: Original LeNet architecture uses Tanh activations instead of ReLU.
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Table 2. Architecture of VGG-16 + CIFAR-10 Classifier [47].

Layer* Activation* Neurons Trainable
type Parameters
Conv relu 64 1792

Conv relu 64 36928

Max-pooling - - -

Conv relu 128 73856

Conv relu 128 147584

Max-pooling - - -

Conv relu 256 295168

Conv relu 256 590080

Conv relu 256 590080

Max-pooling - - -

Conv relu 512 1180160

Conv relu 512 2359808

Conv relu 512 2359808

Conv relu 512 2359808

Conv relu 512 2359808

Conv relu 512 2359808

FC relu 512 262656

FC softmax 10 5130

Total - - 15,001,418

*Note: Batch normalization in between conv layers, before activations.

5.1.1 Hyperparameter Configurations. As mentioned in Section 2, we simulated a label flipping

attack (LFA) which targets samples of targeted labels performed during the retraining phase of the

network. Per [46], the batch size can smooth the results of a label flipping attack. With a higher

batch size, the number of contaminated samples per batch will be lower, meaning that the resulting

loss computed during back-propagation will be lower, and thus the error from the contaminated

samples will be lower. So, it may be possible to achieve the attacker’s goals using several different

hyperparameter strategies which have different effects on the weights during poisoning.

Because we reuse the original training data for the LFA, there is no deviation in the distribution

of the data used for training and retraining. As a result, the weights in the network may see

minimal change while performing the attack. While we assume the attacker may try to optimize for

stealthiness, we perform our experiments with multiple configurations of training hyperparameters

in order to demonstrate the efficacy of our approach with different weight update strategies. Those

configurations are shown in Table 3. For 2 of the configurations, we used a standard learning rate

of 1𝑒 − 3, and for the other 2 configurations we chose a higher learning rate of 5𝑒 − 3 with a shorter

training time in order to speed up convergence. The trials with a higher learning rate will of course

result in larger initial updates to the weights, and so the difference in accuracy when applying the

poisoned update may be larger. The results for these tests are shown later in this section.

1
Model weights were obtained from https://github.com/geifmany/cifar-vgg.
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Table 3. Hyperparameter configurations

Batch size Epochs Learning Rate
128 50 1e-3

128 25 5e-3

1024 100 1e-3

1024 50 5e-3

5.2 Diverse Networks
Using the methods that were described in Section 4.2 and the baseline MNIST classifier, we ran

simulations on a range of values 𝑡𝑝 = [1.0, 10.0] in increments of 0.2%. For each value of 𝑡𝑝 , we

generated an ecosystem containing 1000 mutated versions of the original model and compared the

accuracy against the original. Given these tests, we are primarily concerned with 2 metrics:

1) The HD between the weights of models A and B should be as close to 50% as possible.

2) The difference in test accuracy between models A and B should be as close to 0% as possible.

HD is an appropriate metric for measuring the similarity/dissimilarity between two strings. In this

case, the more diverse and unpredictable the specific weights are for a given network relative to
another in the ecosystem, the less likely an attacker would be able to leverage information from one

known network to design an update file that is appropriate / targeted to another. In what proceeds,

we evaluate our approach against these metrics.

5.2.1 Ecosystem Diversity. The average HD can be used as a metric to evaluate the ambiguity

between models from the perspective of an attacker, and should ideally be 50%. In Figure 5(a)

we show the average HD for the ecosystem at both precisions, and in Figure 5(b-c) we show the

probability for each bit of the weight value to flip during the mutation process. In these graphs,

the vertical line is positioned at the point on the x-axis corresponding to the final value bit of

the given floating point precision, using the IEEE 754 standard. The probability is computed by

examining how frequently that particular bit flips for every single weight to which stochastic

parameter mutation is applied.

In both cases, most of the value bits have a probability greater than 50% of flipping, while the

exponent bits (aside from the 3 least significant bits with < 5% probability) and the sign bits do

not flip. This is fully anticipated due to the relatively small upper bound on the shift threshold

(< 10%), and so we define the HDwith respect to the significand, which is the portion of the network
impacted by the SPM process. As a result, Figure 5(a) shows that the HD increases logarithmically

proportional to 𝑡𝑝 , and approaches 50% for the significand bits. What stands out in these results,

is that in the 32-bit network, even shifting the weights by 1% of their value results in over 40%

HD between the resulting networks. This shows that we are able to achieve the desired variation
between models in the ecosystem without significantly adjusting their weights. This is beneficial

because as weights are adjusted by increasingly large amounts (i.e. using a higher 𝑡𝑝 ), the mutated

models are more likely to deviate from their base functionality and thus become unusable.

5.2.2 Ecosystem Performance. With respect to evaluating the relationship between the original

model and the ecosystem, we should ensure that the difference in test accuracy of the ecosystem is

minimized as much as possible (0, ideally). Hence, we evaluate the ecosystem performance on both

overall / average accuracy, as well as per-class accuracy. By considering the per-class accuracy, we

ensure that the mutation process does not have a harsh negative consequence on a singular class
significantly over others.
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Fig. 5. (a) Average hamming distance between model weights before and after stochastic parameter mutation
is applied in both 32-bit and 16-bit precision. (b-c) Probability of flip for each bit in the weight value in 32-bit
and 16-bit precision at different values of 𝑡𝑝 . The dotted line marks the final value bit for the corresponding
floating point representation (221 for 32-bit and 2

9 for 16-bit). Everything to the right of the dotted line is an
exponent or sign bit. The sign bit never flips, and only the 3 least significant exponent bits ever flip.

Figures 6(a-b) show the distribution of the accuracy across each ecosystem. In Figure 6(c) we

show a graph of the average accuracy of the ecosystem that was generated for the corresponding

value of 𝑡𝑝 . In the graph, the cutoff value at 99.0 is the base accuracy, so anything under this line

is an undesirable result. With increasing values for 𝑡𝑝 there is a gradual loss in accuracy, but it

is relatively small. Even for a high value, e.g. 𝑡𝑝 = 10%, the loss in accuracy is less than 0.02%.

Despite this, we do not want the ecosystem to have a drop in accuracy from the original, so we

select 𝑡𝑝 = 0.05 as the optimum where the level of diversity is maximised, but the accuracy is at or

above the baseline. Observing 𝑡𝑝 = 0.05 as our optimum, we use this as our cutoff value for our

experiments we conduct to measure the effect when poisoning the ecosystem in order to minimize

computation.

To evaluate the ecosystem performance for larger networks, we applied the same analysis to

VGG-16 trained on the CIFAR-10 dataset. Results for the overall accuracy on this network are shown

in Figure 6(d-e). The VGG model has a large number of weights and additional layers which impact

the SPM process. This limited the range of 𝑡𝑝 to about 3%, as SPM at higher percentages resulted

in a significant reduction in accuracy. However, we were still able to mutate the weights at up to

𝑡𝑝 = 0.02 without impacting network performance. We present results for VGG in 32-bit format due

to the lack of native support for 16-bit weights in the batch normalization layers. Because of the

large number of weights and layers, the errors introduced at each layer by SPMmay be compounded

to the output and result in a larger error. That being said, the steps taken towards reducing the

impact on accuracy – i.e. avoiding bias terms, and defining the cutoff range – help alleviate this to

a point where we can still reliably apply SPM to larger networks. Moreover, limiting the range of 𝑡𝑝
did not adversely impact the efficacy of the SPM process against Trojan transferability. Interestingly,

though, is that the accuracy of the ecosystem could not stabilize towards the baseline for 𝑡𝑝 < 0.01.

This is likely just an anomaly due to the nature of how python/tensorflow generates random

numbers that are of that magnitude.

Overall, for both LeNet-5 and VGG-16, diversification through SPM does not compromise the

functionality of the networks, and the accuracy is nearly identical, both in terms of individual class

accuracy, as well as overall accuracy. However, their structure, in terms of the binary representation

of the weight values, is significantly different, as indicated by the HD. Hence, it is possible to
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Fig. 6. Average accuracy results for two neural network ecosystems (n = 1000). (Top) LeNet-5 + MNIST: (a)
and (b) show the accuracy distribution of the ecosystem for 32-bit and 16-bit networks, and (c) plots the
average accuracy for 1.0% ≤ 𝑇𝑝 ≤ 10.0%. (Bottom) VGG + CIFAR-10: (d) shows the accuracy distribution and
(e) shows the average accuracy (0.2% ≤ 𝑇𝑝 ≤ 3.2%).
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Fig. 7. Average accuracy of each ecosystem broken down into each class. (a-b) Show results for the LeNet-5 +
MNIST classifier. (c) Show results for the VGG + CIFAR-10 classifier.

diversify the ecosystem of models without compromising the integrity of the components. Next,

we demonstrate the security aspects of our approach.
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Fig. 8. (a) Confusion matrix showing the difference in classification error of a model before and after the
model has been poisoned. (b) Similar confusion matrix showing difference in classification error before and
after poisoning, but the poisoning method is done indirectly by using an update generated from the model in
(a) to another arbitrary model in the ecosystem. For both confusion matrices, positive values indicate more
errors in those particular classes, while negative values indicate less errors.

5.3 Transferability of Neural Trojan
One of the main ideas of this paper is that, given an ecosystem of models that all perform the same

function, the success of an attacker’s attempts to Trojan a given network in the ecosystem does not

guarantee success if they were to attempt to upload the Trojan to another model in the ecosystem.

As described in Section 2, a Trojan relies on being as stealthy and undetectable as possible. As such,

the given Trojan may only be classified as effective (stealthy) if if it does not affect the accuracy of

the model.

In Figure 8, we see two different confusion matrices (a-b) corresponding to two separate models,

𝑀𝑖 and𝑀 𝑗 , respectively, in the Lenet-5 + MNIST ecosystem. All models in this ecosystem, including

𝑀 𝑗 , were generated using 𝑡𝑝 = 0.05. Both confusion matrices show the difference in performance

of the model before and after the delta-update procedure. Negative values indicate that the model

made less decisions for that respective prediction and true value pairing, while positive values

indicated more decisions for that pairing. Essentially, positive values are a deterioration, while

negative values are an improvement. In this example, the attacker has inserted a Trojan into𝑀𝑖

which marginally increases the error rate of class 1 to 7. Overall, the accuracy of the model is

unchanged; so we can say that this Trojan is successful because it achieves the attacker’s goal of

targeted misclassification of 1 to 7, while remaining below the detection threshold. The attacker

then uploads the Trojan’ed update to another model in the ecosystem, 𝑀 𝑗 , which results in the

confusion matrix in Figure 8(b). As a result of the combined usage of stochastic parameter mutation

and delta-update, the stealthiness of the Trojan is lost when attempting to infect another model in

the ecosystem.

As mentioned in the experimental setup, we elected to use 4 different configurations for the

hyperparameters used when retraining (poisoning) the network. For each configuration, an ecosys-

tem with 𝑛 = 1000 is generated for 𝑡𝑝 = {0.010, 0.012, 0.014, ...0.050}. For each value of 𝑡𝑝 , we take

the ecosystem and sample 30 random models from it. For each sampled model, we perform the
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Fig. 9. Graphs showing the average drop in accuracy as a result of mounting the LFA on the LeNet-5 + MNIST
classifier, and transferring the attack to other networks in the ecosystem. The top row shows the results for
32-bit networks, and the bottom shows results for 16-bit networks.

poisoning attack, then generate a Trojan’ed update that would be used for that model and apply

that update to all of the other models in the ecosystem. The results for those experiments are shown

in Figure 10 with (a-d) depicting results for the 32-bit networks and (e-h) depicting results for the

16-bit networks.

The results are quite interesting, and paint a clear picture of the effects as a direct result of the

mutation and delta-update procedures. First, we can order the configurations by the amount they

change the weights – and thus, accuracy – in ascending order {𝐶3,𝐶1,𝐶4,𝐶2}. It is clear that the
hyperparameters for configuration 2 (𝑙𝑟 = 5𝑒 − 3, batch size = 128, epochs = 50) result in the largest

change for the weights, which is expected. This is indicated by the average drop in accuracy of

0.4% for the targeted model. While this configuration may not be ideal for the attacker, it shows

what the result would be for the ecosystem in the presence of a poisoning attack that significantly

alters the weights. For the LeNet-5 + MNIST ecosystem, among all of the configurations, the drop

in accuracy for the ecosystem can be 2-3 times greater than that for the model that was attacked

directly.

For the larger VGG-16 model, we performed the same experiments, but only at the optimum

threshold for that network (𝑡𝑝 = 0.02) in order to save time on computation. The results for these

experiments are shown in Figure 10(i-l). Results are comparable to the smaller LeNet-5 + MNIST

classifier. For hyperparameter configurations 1-2, we see a significant drop in accuracy as a result

of transferring the Trojan, while the same phenomena is less apparent in configurations 3-4. When

directly comparing the results between the small and large models, we see that the drops in accuracy

are much more significant with the large network. We believe that this is due to the sheer amount of

parameters and layers present in the network. Errors introduced by mismatched/malicious updates

are compounded through each layer, and ultimately translate to a higher total accuracy drop –

worse than a random classifier in the case of configuration 2.
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Fig. 10. Graphs showing the average drop in accuracy as a result of mounting the LFA on the given classifier,
and transferring the attack to other networks in the ecosystem. The first two rows correspond to the LeNet-5 +
MNIST classifier, which uses a threshold of 𝑡𝑝 = 0.05. The bottom row corresponds to the VGG-16 + CIFAR-10
classifier, which uses a threshold of 𝑡𝑝 = 0.02.

While the mean absolute change in accuracy between the direct and transferred Trojan does not

always appear large, our experiments are conducted across an ecosystem of 1000 models, with 30

sampled individually for direct Trojaning. Thus, each data point on the Transferred Trojan lines in

Figure 10 is representative of almost 30,000 data samples. We can prove that the change between the

two is statistically significant, and thus would indicate an issue with the update. For instance, let us

take the worst case for each model (i.e. lowest change between direct/transferred); in all cases, this

was configuration 3. For each model, the mean (`) for effect of direct and transferred Trojans are as

follows: LeNet-5 + MNIST (32-bit) −→ 𝐷𝑖𝑟𝑒𝑐𝑡 (` = 0.099± 0.130) vs. Transferred(` = 0.184± 0.137),
LeNet-5 + MNIST (16-bit) −→ 𝐷𝑖𝑟𝑒𝑐𝑡 (` = 0.050 ± 0.038) vs. Transferred(` = 0.16 ± 0.080), and
VGG-16 + CIFAR-10 −→ 𝐷𝑖𝑟𝑒𝑐𝑡 (` = 0.522 ± 0.074) vs. Transferred(` = 0.603 ± 0.086). In each of

these scenarios, the computed p-value is < 0.0001, which shows that the change is consistently

significantly different from the direct Trojan.
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6 SECURITY ANALYSIS
In our proposed method, we do not claim to thwart an attacker attempting to Trojan a given

network; there are a number of other works targeting this in the literature [36, 16, 3]. We instead

focus on ensuring that the attacker cannot successfully transfer their Trojan to another device

containing the same model, vastly limiting the scale and scope of the attack. Additionally, our

approach ensures that, if an attacker is snooping and gains information about a particular update

for a network, that this information does not help them attack any other device in the ecosystem.

Thus, the remainder of the security analysis of our approach focuses on the attacker’s ability to

generate an update that can generalize to multiple networks in the ecosystem, while only having

access to the model they have mounted their attack on.

Let us assume that the attacker has access to some device that is running a model from the

ecosystem, and that they have successfully mounted a Trojan and computed an update file for that

model. We will denote the Trojan’ed model as𝑀𝑡 , its update as𝑈𝑝 , and another arbitrary model

in the ecosystem as 𝑀𝑖 . The difficulty for the attacker arises when they wish to apply 𝑈𝑝 to one

or more𝑀𝑖 . The exact difficulty is hard to compute, as it involves defining some threshold for the

floating point values of the weights and determining some way to adjust the values for Δ𝑤 in𝑈𝑝

to account for this. However, we can model this difficulty by considering: 1) how many weights are

in the network,𝑊 , 2) the floating point precision of the weights 𝑓𝑖 (specifically the significands),

and 3) the accuracy of the model. Using these values, we can formulate the difficulty 𝑑 as Eqn. 1.

𝑑 =𝑊 ∗ 𝑜𝑝𝑡 (𝑝𝑒𝑟𝑡𝑢𝑟𝑏 (𝑓𝑣𝑎𝑙 )) (1)

For every weight 𝑤𝑖 in the network, the attacker must compute some value(s) that achieves

their goal of activating the respective neuron(s) for the Trojan trigger, while ensuring that the

accuracy of the model is not negatively impacted. The complexity of this problem increases relative

to the network size and precision of weights used. Further, with a large ecosystem, there is no

guarantee that their malicious update will be effective across other devices. The reason that there is

one-to-one mapping for an update to its model is because the XOR procedure of the weights can end

up shifting the weights by a large, unintended amount. When this occurs, we see the phenomena

shown by the confusion matrices in Figure 8 and the graphs in Figure 10, where the impact of the

Trojan is much higher than intended by the attacker, and is thus far less stealthy and easier to

detect. Empirically, out of 1000 networks, 85%, when updated with 𝑈𝑝 , saw at least 2𝑥 decrease

in accuracy over𝑀𝑡 , which would be detected by a BIST consisting of 10,000 test images. Hence,

on an individual basis, the victims can identify the issue and take appropriate action, e.g. rolling

back to a baseline network configuration. Moreover, by pooling the post-update accuracy loss from

the ecosystem as a whole, the overall impact would be obvious, enabling the manufacturer to take

ecosystem-wide corrective action as appropriate.

As a practical example of a threat scenario, consider an attacker that aims to circumvent the

BIST consisting of 𝑁 test images. If the attacker Trojans the model, and the accuracy drops by

1%, then we can expect a BIST with 𝑁 = 100 test images to catch the Trojan, as there would be a

difference of 1 additional image that was classified incorrectly. Catching this discrepancy is simple

if we have the entire test dataset and time to process all the test images. However, depending on

the target application, we may not be able to store the entire testing set for quick access in a BIST,

and instead have a fraction of the test data on-hand, or only have time to test a fraction of the

data, e.g. during a startup process. If we consider a trial with the MNIST classifer where the Trojan

degrades the accuracy by 0.15%, then we would expect to catch it if we have a test set of at least

𝑁 = 667 (10,000 / 15) images. For this same Trojan applied to the ecosystem, the accuracy drops by
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0.5% – meaning a misclassification would be expected every 𝑁 = 200 (10,000 / 50) images. Because

of this, the Trojan-inserted network would fail the BIST for most other devices in the ecosystem.

7 CONCLUSION & FUTUREWORK
In this paper, we presented a novel approach to machine learning security that focuses on protecting

an ecosystem of variant devices by diversifying configurations which can expose attacks. We

presented an approach of stochastic parameter mutation which allows IP owners to deploy their

model as a diverse ecosystem of architecturally different but functionally equivalent variants. This

aspect of diversity ensures that, in the event where an attacker is able to successfully mount an

attack on one device (model), they will be unable to translate that same attack to another device.

The XOR-based update mechanism delta-update with the BIST also enables developers to securely

update their models in the field.

First, we evaluated our approach using a small, baseline classifier based on LeNet-5, trained on

MNIST. Using this toy example, we applied varying levels of SPM and evaluated the ecosystem

in terms of performance and resilience – which proved to be very successful. We then scaled our

approach up to a much larger model, VGG-16, which was fine-tuned on the CIFAR-10 dataset. Our

results for the VGG-16 network showed similar results to that of the baseline model, and, even,

that our approach scales quite well to larger models. The final error on the output as a result of the

malicious update being applied by our system can be much larger with larger models. While we

achieved excellent results on the VGG-16 network, the threshold for SPM had to be set lower than

with the LeNet-5 network, which makes sense. In the future, it would be interesting to investigate

different means of implementing SPM on larger networks to allow higher thresholds and thus better

security. In general, this paper lays out the intuition of our approach, as well as the foundation for

a flexible toolflow to adopt this approach in the field.
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