Efficient Nonlinear Autoregressive Neural Network
Architecture for Real-Time Biomedical Applications

Brooks Olney, Shakil Mahmud, and Robert Karam
University of South Florida
{brooksolney, shakilmahmud, rkaram}@usf.edu

Abstract—Medical devices, such as continuous glucose mon-
itors (CGMs) and drug-delivery pumps, are often combined
in closed-loop systems for treating chronic diseases. Generally,
these systems consist of sensors and actuators whose operation
is modulated based on sensed stimuli. Closed-loop systems may
be susceptible to a number of different security and reliability
issues which may result in incorrect operation which may
endanger patients. Nonlinear autoregressive neural networks
(NARNNs) may be used in such systems for error detection
and correction due to their predictive capabilities; however,
an efficient implementation is needed for use in wearables
and biomedical implants. In this paper, we present an area-
and energy-efficient, pipelined NARNN hardware architecture
suitable for such constrained devices. The architecture was tested
on FPGA to confirm functionality, then synthesized targeting the
SAED 32nm EDK. This NARNN implementation requires an
estimated area of 0.02 mm?, 0.54 us and 0.76 nJ per inference.

I. INTRODUCTION

Biomedical devices with closed-loop or semi-closed loop
control systems, such as the implantable pacemaker, artificial
pancreas, or certain neurostimulators, can be used to man-
age chronic disease and improve patient care and comfort.
However, as these devices are used in real-time environ-
ments with extremely high cost for failure, it is critical to
ensure their security and reliability. One potential issue could
stem from incorrect sampling of the target biosignal. Sensor
drift, for example, due to environmental changes, moisture
absorption, system aging, etc., or faults, whether naturally
occurring or due to interference by malicious actors, can result
in incorrect treatments, e.g. drug dosage or neurostimulation
amplitude/duration, which can be life threatening. By utilizing
a predictive model, the biosignals measured in real-time can be
validated against expected behavior before they are processed
by the control algorithm, adding another layer of security and
reliability to the system.

As an example, we consider the artificial pancreas system
(APS) [1]]. The APS delivers a measured dose of insulin as
needed by the patient, and is comprised of a small continuous
glucose monitor (CGM), an insulin infusion pump, and a
control algorithm. The sensor is implanted subcutaneously and
continuously monitors the patient’s blood glucose concentra-
tion. When the glucose level crosses a predefined threshold,
the adaptive control algorithm adjusts, either by increasing,
decreasing, or stopping the insulin delivery such that the target
blood-glucose concentration is maintained. As the insulin

pump is modulated in response to the glucose concentration
as measured by the sensors, an error in measurement or fault
during algorithmic processing could be harmful. Hence, high
reliability is critical.

Step-ahead prediction is one possible technique to improve
reliability in such systems. Using various signal processing
and statistical techniques, an estimate for a likely range of
expected next measurements could be used to confirm the true
next measurement or identify a potential issue. Measurements
far outside the expected range could be corrected, again using
a variety of techniques. To this end, machine learning (ML)
techniques are well-suited to this problem space, and have
seen usage in biomedical applications such as early disease
prediction, forecasting risk factors, and treatment [2], [3]. In
particular, we focus on the use of nonlinear autoregressive
neural networks (NARNNs) which have been used for time
series prediction for biosignals [4].

Broadly, artificial neural networks (ANNs) can forecast
time-series data by modeling complex data with nonlinear
relationships using multiple hidden layers to improve pre-
diction and classification accuracy. Implementation of ANNs
in hardware can be very costly in terms of area and power
requirements; simultaneously, bioimplantables have high ef-
ficiency and ultra-low power design requirements. In this
paper, we present an efficient pipelined hardware architecture
for step-ahead prediction of biosignals with a 5 neuron, 16
tap NARNN, using CGM data from the open DINAMO
CGM dataset [5] as a case study. The dataset consists of
blood-glucose recordings from 9 human subjects with Type 1
diabetes and provides a sufficient baseline for evaluating
the hardware implementation. The implementation is verified
on FPGA and synthesized with Synopsys Design Compiler
using the SAED 32nm library. The proposed architecture is
estimated to occupy an area of 0.02 mm?, requiring 107
clock cycles / 0.54 ps and 0.76 nJ per inference. To the
best of our knowledge, this is the first hardware architecture
of the NARNN targeting ultra-constrained devices such as
bioimplantables.

II. BACKGROUND
A. Hardware Implementation of ANNs

ANNSs are generally considered computationally expensive,
and as such require optimizations to both the model architec-
ture and parameters for implementation in hardware. There are

many examples in the literature of ANN acceleration in var-
ious hardware platforms, e.g. field-programmable gate arrays
(FPGAs) or application-specific integrated circuits (ASICs).

In [6]], the authors presented three hardware accelerators for
recurrent neural networks (RNNs) which are well suited for
time-series data. Similar to our work, the authors experimented
with different on-chip and off-chip memory access patterns
and quantizing the weights to varying Q-format fixed-point
(FP) numbers. In [7] Gao et al. improved upon this and
presented a power efficient RNN implementation in a MiniZed
FPGA. In their approach, they reduced computational com-
plexity by quantizing the weights to 8-bit FP and by enabling
data reuse between arithmetic units. With total on-chip power
consumption at 1.48 W, their accelerator can achieve between
389 nJ and 79 nJ per inference, depending on operation mode.
While lower than in [6]], this approach may not be suitable for
ultra-low power applications.

There has also been some work specifically towards pre-
dicting blood glucose over time. Zhu et al. [§]] presented a
deep learning based approach that utilizes long short-term
memory (LSTM). They implemented their approach on an
STM32 microcontroller and measured the power consumption
at 8 uW with total execution time of 22 ms — translating to
176 nJ per inference. While the model performance and power
requirements are good, the longer execution time translates
to larger energy requirements per inference. This is partially
due the size of the models they used and the operations
taking place in floating point on a general-purpose processor.
In practice, a more lightweight and pipelined implementation
may be more desirable, especially in battery powered devices
to increase the overall system lifetime.

B. NARNN Algorithm

The non-linear autoregressive network (NAR) uses internal
delay states to encapsulate the trends from the last d timesteps
to predict the next value in the time series — with the number
of states defined by the delay timesteps d. The model uses d
past values of the time series data Y to predict the next value
in the time series Y; using the following equation:

}/t = f(Yt—hY;:—% "'7)/t—d) (1)

where f is a nonlinear function that can be approximated by
a neural network. This is accomplished by training the neural
network on a given time series, which will iteratively adjust the
weight and bias terms to improve the accuracy to the targets.
The architecture of the NARNN is defined by the number
of neurons in the hidden layer N and the number of delay
states d. Each neuron has a weight term for every delay state
and a single bias term, with a nonlinear activation function
¢ — typically hyperbolic tangent (tanh). Once the model has
been trained, the feedforward operation can be formalized as
follows:

N d
Yizzwoi*¢(bi+zwi,j*l)j> + boi)
i=0 =0

III. METHODOLOGY
A. NARNN Software Implementation

To generate and train the NARNN models, we used the
neural network time series application in Matlab R2021a. We
were able to configure N and d, select one or more data
sources to train on, set different splits for training, validation
and testing data, and train the model repeatedly. We found
the most suitable architecture to be (N = 5,d = 16) for the
DINAMO dataset [5]].

For hardware acceleration, we experimented with FP quan-
tization using different representations of integer and exponent
bits to find the lowest bit-width that could still accurately
predict the time series data. To evaluate the tradeoffs of
quantization, we built a testbed for the NARNN in Python
which uses the Fxpmath library to quantize the NARNN
parameters at different FP representations. This allowed us
to quantize the weights at smaller precisions, compare the
results against traditional floating point results and compare
intermediate results with the hardware implementation. Using
this approach, we found signed 10-bit FP with 1 integer bit
and 8 exponent bits to be the best option for storage savings
and model performance.

Aside from evaluating the effects of weight quantization, the
testbed automates outputting model weights and subject input
data into formats parsable by the hardware description lan-
guage (HDL) code. Results in FPGA simulation are expected
to be exactly the same, aside from some rounding errors, so
this provides a good baseline for our hardware implementation.

B. Hardware Architecture

The architecture of the proposed hardware accelerator is
shown at a high level in Figure [T{a). The accelerator features
a pipelined processing architecture that is controlled by a finite
state machine (FSM) and implements the neurons as self-
contained processing elements (PEs).

The state diagram of the FSM is shown in Figure [T[b). The
circuit waits for a new measurement, Y;, then begins execution
of the first layer. This is done by iteratively loading a column
of weights and latching the results from the PEs. Once the first
matrix multiplication is complete, the tanh activation function
is approximated through a lookup table (LUT). The tanh values
feedback into the PEs to be multiplied by the output layer
weights, and the results are summed to derive the final output
for that timestep. The internal delay states are updated every
time a new update is received and an output calculated, and
are maintained by using counters and storage registers.

The PE is designed to be self-contained and compact,
with support for multiply-accumulate (MAC) operations in
different FP representations. A diagram of the PE is shown
in Figure [T{c). The PE has reset and enable signals and
3 dedicated operand inputs, one for the bias term and two
for the multiplier and multiplicand. It has internal storage
registers, one of size Q(m+m).(n+n) for the product of w and
x, and another for accumulating the result with an extra bit
for overflow. Aside from the activation function ¢, the PE
encapsulates all functionality of the NARNN neuron.

Tap Delay

Yeay = Oﬂ

Y /
d<16 Q
Update <\ .
o

rdy‘ 1

.> done

Fig. 1: (a) Overall hardware architecture consisting of FSM control logic, an array of 5 PEs, a single tanh LUT and output
accumulator. (b) Controller FSM begins execution once data is received - controlling the updating of delay states, loading of
weight columns, layer swapping and computing the final output. (c) Internal structure of PE consisting of three data inputs

(w, z,b), a multiplier, adder and accumulator.

A single neuron can be used to implement the full function-
ality of any NARNN. However, as N increases, so to will the
latency as more computations are required per data sample —
we used a network with (N = 5,d = 16). Since this network
size is relatively small (91 total parameters), we implemented
the NARNN with 5 PEs (same number of neurons). Loading
the weights takes 5 clock cycles and the result is latched
on the subsequent clock cycle. With 16 total delay states,
the hidden layer takes a total of 96 clock cycles to compute
the intermediate result, plus 5 to compute ¢. Weights for the
output layer only need to be loaded once since they fit entirely
in the weight cache — thus it takes 5 cycles to load the weights
and one cycle to compute the result. Once the system receives
an input, it will produce a result after 107 clock cycles.

With a small number of parameters, the entire network could
potentially be stored in registers for fast real-time inference,
albeit at great hardware costs. In our case with the CGM
data, measurements are only taken every 5 minutes, so the
timing requirements are not so tight as to require a response
on the order of nanoseconds. Moreover, the network weights
encapsulate the behavior for a single user, hence there must
be a mechanism for easily programming a user’s weights into
the device. This can be achieved by using an ultra-low power
nonvolatile memory (NVM), such as that in [9]. Since the
algorithm has no need for writing data to memory, we simply
require high read endurance.

IV. RESULTS
A. Model Performance

Performance was evaluated using the Python testbed de-
scribed in Section While we experimented with different
FP notations, we only show results comparing the performance
of the software and hardware implementations. Results for the
best and worst subjects in the DINAMO dataset (in terms
of achievable model performance) are shown in the plots in
Figure [2] There are some regions around upper/lower peaks
where the hardware simulation is slightly above or below the
expected. A comprehensive listing of the results is provided in

TABLE I: Comparison of results from software and FPGA.

Subject RMSE
Software = Hardware Abs. Difference

S1 0.279 0.311 0.032
S2 0.306 0.380 0.074
S3 0.581 0.632 0.051
S4 0.375 0.322 0.053
S5 0.230 0.321 0.091
S6 0.702 0.698 0.004
S7 0.523 0.524 0.001
Average 0.428 0.455 0.044

Table [We found that the RMSE of the two implementations
does not differ drastically (©=0.044 + 0.031).

The behavior between the software and hardware is ex-
pected to be slightly different, due to quantization error and
inconsistencies in rounding between the systems. Because
there are a relatively small number of parameters in the
NARNN, it can be very sensitive to quantization error. It is
important to select a FP notation that can accurately represent
all of the NARNN parameters — we used FP-10/8, which
has a range of [-2, 1.99609375]. Retraining was done in
Matlab iteratively to derive networks with weights that could
be accurately represented within that range. In general, these
results demonstrate that the optimizations to the NARNN
architecture (parameters and execution flow) have no drastic
effect on model performance.

B. FPGA and Custom Hardware Results

The resource requirements of our platform targeting a the
smallest available Spartan-7 FPGA (part no. 7s6cpgal96) are
shown in Table [T, Registers are allocated for the parameter
cache, delay state matrix, accumulator results and intermediate
MAC results in each neuron. Most hardware overheads are in
the controller logic between the memory and logic elements.
This implementation is suitable for wearable or other external
applications, with an estimated power consumption of 38 mW,
inference time of 1.07 s and 35.31 nJ per inference.

Subject 1 - Trial 1 Subject 1 - Trial 2

—— Ground Truth f— —— Ground Truth
20 Software (float) / \ q 20— Software (float) "M/\"\]
Q FPGA (fixed-point) | Ny A < FPGA (fixed-point) | \
B f - B |
S I5F s I5r | 1
£ E \ l§
2 / 2 \ /
g 10r N g 10} \ A e/ 1
5 | 5 N //
5t /“ 1 5t AV AR 1
N YV,
. . .
100 200 300 100 200 300
Timestep # Timestep #
(a) (b)
Subject 7 - Trial 1 Subject 7 - Trial 2
T T T T T T
1 f — Ground Truth —— Ground Truth A\
" J\ —— Software (float) | —— Software (float) | \
Q FPGA (fixed-point) QI5F FPGA (fixed-point) | \ b
= I\ = |
g 10f | \ A q g |
S J o\ / g !
= w SV \ = ot]
2 sf /YY) / 1 211 Al N A ~
S \ [5 S\ | 7
& 6f WA R (R, 1 8 \W o
*w}’ \ | N\ st v VA
Y
4F]
.
100 200 300 50 100 150 200
Timestep # Timestep #
(© (@

Fig. 2: Plots of predictions both in software and hardware
simulations. (a-b) Subject 1, model with lowest RMSE. (c-d)
Subject 6, model with highest RMSE.

For ultra-low-power applications like implanted devices, a
custom implementation is needed. The proposed architecture
was synthesized with Synopsys Design Compiler targeting the
SAED 32nm EDK and high V7 gates, excluding the tanh LUT
and the weights ROM, which were modeled as black boxes.
Memory area and power consumption were estimated using
CACTI 6 [10]. Memories were modeled as direct mapped
scratch RAMs with no tag array and a blocksize of 2 bytes,
far larger than necessary for the required storage. The total
area, including synthesized logic and memory arrays, is about
0.02 mm?2, which is suitable for integration with an ultra-
constrained bioimplantable device.

Low power design options such as array, wordline, and
interconnect power gating were enabled for the memories.
Despite this, the tool estimates significant leakage power of
about 1 mW for the memory arrays, which would not be
suitable for an ultra-low power implant. In reality, higher
density and lower leakage ROMs or other NVMs must be
used, as this will help alleviate the leakage issue. Thus, the
CACTI results provide a high upper bound on the area and
power estimate. For the synthesized logic, Design Compiler
reports static and dynamic power of 317.2 uW and 29.3 uW,
respectively, with a cycle time of 5 ns. This high static
leakage can also be addressed in a number of ways, namely,
1) reducing Vpp, trading off delay with power, and 2)
coarse-grained power gating using sleep transistors. Option
2 has been shown to reduce leakage power by over 90% in
some cases [11] and has been applied successfully in other
biomedical circuit applications [12]. In this case, the device
only needs to operate for about 200ns every 5 minutes (or
when a new sample is acquired), for an effective duty cycle of

TABLE II: Utilization on Spartan-7 (7s6¢cpgal96) FPGA.

LUT FF BRAM DSP Power Latency
Available 3750 7500 5 10 - -
Required 361 405 1 10 38 mW 1.07 us

6.721078%, promising a dramatic reduction in static power.
The use of emerging NVM technologies would also enable
retention of state information during sleep, leading to lower
overall power consumption and faster wake times.

V. CONCLUSION

In this paper, we have presented an efficient pipelined
NARNN architecture targeting bioimplantables. The network
can perform error checking and correction to improve secu-
rity and reliability of these devices in a real-time, closed-
loop system. The 5 neuron, 16-tap NARNN was verified in
FPGA and matches the software implementation to within
0.044 RMSE on average. Using the SAED 32nm EDK, the
synthesized implementation occupies an area of just 0.02 mm?
and requires around 0.71 nJ per inference, making it suitable
for use in ultra-constrained devices. Future work will focus on
system-level evaluation and energy efficiency improvements.

REFERENCES

[1] C. K. Boughton and R. Hovorka, “Advances in artificial pancreas
systems,” Science translational medicine, vol. 11, no. 484, 2019.

[2] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, “Disease prediction
by machine learning over big data from healthcare communities,” leee
Access, vol. 5, pp. 8869-8879, 2017.

[3] D. Dave, D. J. DeSalvo, B. Haridas, S. McKay, A. Shenoy, C. J. Koh,
M. Lawley, and M. Erraguntla, “Feature-based machine learning model
for real-time hypoglycemia prediction,” Journal of Diabetes Science and
Technology, vol. 15, no. 4, pp. 842-855, 2021.

[4] M. Asad, U. Qamar, and M. Abbas, “Blood Glucose Level Prediction
of Diabetic Type 1 Patients Using Nonlinear Autoregressive Neural
Networks,” Journal of Healthcare Engineering, vol. 2021, 2021.

[5] F. Dubosson, J.-E. Ranvier, S. Bromuri, J.-P. Calbimonte, J. Ruiz, and
M. Schumacher, “The open DINAMO dataset: A multi-modal dataset
for research on non-invasive type 1 diabetes management,” Informatics
in Medicine Unlocked, vol. 13, pp. 92-100, 2018.

[6] A.X.M. Chang and E. Culurciello, “Hardware accelerators for recurrent
neural networks on FPGA,” in 2017 IEEE International symposium on
circuits and systems (ISCAS). 1EEE, 2017, pp. 1-4.

[7]1 C. Gao, A. Rios-Navarro, X. Chen, T. Delbruck, and S.-C. Liu, “Edge-
drnn: Enabling low-latency recurrent neural network edge inference,”
in 2020 2nd IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS). 1EEE, 2020, pp. 41-45.

[8]1 T. Zhu, L. Kuang, K. Li, J. Zeng, P. Herrero, and P. Georgiou, “Blood
glucose prediction in type 1 diabetes using deep learning on the edge,” in
2021 IEEE International Symposium on Circuits and Systems (ISCAS),
2021, pp. 1-5.

[9] K. Jeon, J. Kim, J. J. Ryu, S.-J. Yoo, C. Song, M. K. Yang, D. S. Jeong,
and G. H. Kim, “Self-rectifying resistive memory in passive crossbar
arrays,” Nature Communications, vol. 12, no. 1, p. 2968, Dec. 2021.

[10] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[11] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar,
and V. De, “Dynamic sleep transistor and body bias for active leakage
power control of microprocessors,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 11, pp. 1838-1845, 2003.

[12] R. Karam, S. J. Majerus, D. J. Bourbeau, M. S. Damaser, and S. Bhu-
nia, “Tunable and lightweight on-chip event detection for implantable
bladder pressure monitoring devices,” IEEE transactions on biomedical
circuits and systems, vol. 11, no. 6, pp. 1303-1312, 2017.

	Introduction
	Background
	Hardware Implementation of ANNs
	NARNN Algorithm

	Methodology
	NARNN Software Implementation
	Hardware Architecture

	Results
	Model Performance
	FPGA and Custom Hardware Results

	Conclusion
	References

